Solving the Differential Equation x2 x2 - 1 dy/dx x x2 - 1 y x2 - 1
In this comprehensive guide, we will explore the method of solving the differential equation:
x2 x2 - 1 dy/dx x x2 - 1 y x2 - 1
Let's proceed step-by-step to arrive at the final solution.
Step 1: Standard Form
First, we rewrite the equation in a more standard form:
(frac{dy}{dx} - frac{x x2 - 1}{x2 x2 - 1} y frac{x2 - 1}{x2 x2 - 1})
This simplifies to:
(frac{dy}{dx} - frac{1}{x2} y 1)
This is a first-order linear ordinary differential equation of the form:
(frac{dy}{dx} P(x) y Q(x))
where:
(P(x) frac{x x2 - 1}{x2 x2 - 1} frac{x^3 - x}{x^4 - x^2} frac{1}{x} - frac{1}{x^2 - 1})
and
(Q(x) frac{1}{x2})
Step 2: Integrating Factor
To solve this, we first find the integrating factor (mu(x)):
(mu(x) e^{int P(x) , dx})
Calculating (P(x)):
(P(x) frac{x^3 - x}{x^4 - x^2} frac{1}{x} - frac{1}{x^2 - 1})
Integrating (P(x)):
(int P(x) , dx int left(frac{1}{x} - frac{1}{x^2 - 1}right) , dx)
The integral of (frac{1}{x}) is (ln |x|), and for (frac{1}{x^2 - 1}) we can use partial fractions:
(frac{1}{x^2 - 1} frac{1/2}{x - 1} - frac{1/2}{x 1})
Thus, we have:
(int P(x) , dx ln |x| - frac{1}{2} ln |x - 1| - frac{1}{2} ln |x 1| C)
Combining the logarithmic terms, we find:
(int P(x) , dx ln left| x sqrt{frac{x - 1}{x 1}} right| C)
So the integrating factor is:
(mu(x) e^{ln left| x sqrt{frac{x - 1}{x 1}} right|} x sqrt{frac{x - 1}{x 1}})
Step 3: Multiply by the Integrating Factor
Multiplying the entire differential equation by the integrating factor:
(x sqrt{frac{x - 1}{x 1}} cdot frac{dy}{dx} - x sqrt{frac{x - 1}{x 1}} cdot frac{1}{x^2} y x sqrt{frac{x - 1}{x 1}})
This can be rewritten using the product rule:
(frac{d}{dx} left( y cdot x sqrt{frac{x - 1}{x 1}} right) x sqrt{frac{x - 1}{x 1}})
Step 4: Integrate Both Sides
Integrating both sides with respect to (x):
(y cdot x sqrt{frac{x - 1}{x 1}} int x sqrt{frac{x - 1}{x 1}} , dx C)
To solve for (y), we need to evaluate the integral:
(y frac{1}{x sqrt{frac{x - 1}{x 1}}} left( int x sqrt{frac{x - 1}{x 1}} , dx C right))
The final solution will depend on the evaluation of the integral and simplification based on the initial conditions if provided.
If you need further assistance or have specific conditions, please share!