Solving the Differential Equation ( frac{y sin x - cos x}{y sin x cos x} , dy dx )

Solving the Differential Equation ( frac{y sin x - cos x}{y sin x cos x} , dy dx )

This article will guide you step-by-step through solving the differential equation:

1. Simplification and Rearrangement

The given differential equation is:

Step 1: Start with the given equation:

( frac{y sin x - cos x}{y sin x cos x} , dy dx )

Step 2: Simplify the left-hand side of the equation:

( frac{y sin x}{y sin x cos x} - frac{cos x}{y sin x cos x} , dy dx )

( frac{sin x}{cos x} - frac{cos x}{y sin x cos x} , dy dx )

( tan x - frac{cos x}{y sin x cos x} , dy dx )

Step 3: Now, rearrange the terms to make it more understandable:

( tan x , dy - frac{cos x}{y sin x cos x} , dy dx )

( tan x , dy - frac{1}{y sin x} , dy dx )

Step 4: Factor out the common term ( frac{1}{y sin x} ) from the left-hand side:

( tan x , dy - frac{1}{y sin x} , dy dx )

Step 5: Notice that we can combine the terms on the left-hand side:

( frac{y sin x - cos x}{y sin x cos x} , dy dx )

2. Integration and Solving the Exact Equation

The equation is exact because:

Step 6: Verify the exactness of the equation by checking the partial derivatives:

( left( frac{partial}{partial y} right) left( frac{y sin x - cos x}{y sin x cos x} right) cos x )

( left( frac{partial}{partial x} right) left( y sin x cos x right) cos x )

The partial derivatives are equal, confirming the equation is exact.

3. Integration of the Exact Equation

Since the equation is exact, we can integrate both sides:

Step 7: Integrate ( y sin x , dy cos x , dx )

Step 8: Integrate the left-hand side:

( int y sin x , dy frac{y^2 sin x}{2} g(x) )

Step 9: Integrate the right-hand side:

( int cos x , dx sin x h(y) )

Step 10: Combine the results:

( frac{y^2 sin x}{2} g(x) sin x h(y) )

Step 11: Simplify and find a constant ( C ) to combine the constants of integration:

( frac{y^2 sin x}{2} - sin x C )

Step 12: Factor out ( sin x ) from the left-hand side:

( sin x left( frac{y^2}{2} - 1 right) C )

The general solution of the differential equation is:

( boxed{frac{y^2}{2} - 1 frac{C}{sin x}})

Conclusion

The final solution to the differential equation ( frac{y sin x - cos x}{y sin x cos x} , dy dx ) is:

( frac{y^2}{2} - 1 frac{C}{sin x})

Keywords

Differential equation Exact equation Integration