Solving Equations Involving Variables: A Step-by-Step Guide
In this guide, we will walk through the process of finding the value of a variable in a given algebraic equation. Specifically, we will solve for the variable z in the equation 5x 2y - 3z 16, given that x 2 and y 3. Let's break down the process step-by-step and explore each method in more detail.
Method 1: Direct Substitution
Given:
5x 2y - 3z 16
x 2
y 3
Step 1: Substitute the values of x and y into the equation.
5(2) 2(3) - 3z 16
Step 2: Calculate the constants.
10 6 - 3z 16
Step 3: Combine the constants on the left side of the equation.
16 - 3z 16
Step 4: Subtract 16 from both sides of the equation.
-3z 0
Step 5: Divide both sides by -3.
z 0
The value of z is 0.
Method 2: Isolating z with a Modified Equation
Given:
5x 2y - 3z 16
We start by isolating the term containing z.
-3z 16 - 5x - 2y
Step 1: Substitute x 2 and y 3.
-3z 16 - 5(2) - 2(3)
Step 2: Calculate the constants.
-3z 16 - 10 - 6
Step 3: Combine the constants on the right side of the equation.
-3z 0
Step 4: Divide both sides by -3.
z 0
The value of z is 0.
Conclusion
In both methods, we arrive at the same conclusion that the value of the variable z is 0. This demonstrates the consistency of algebraic manipulation and the importance of careful calculation in solving equations.
Keywords: Variable substitution, algebraic equations, equation solving
Additional Reading:
Introduction to Algebraic Equations Understanding Variable Substitution Basic Algebraic Operations