Proving the Equation (left(frac{1 ix}{1 - ix}right)^n frac{1 ia}{1 - ia}) Has All Real Roots
In this article, we will demonstrate through a step-by-step mathematical analysis that the equation (left(frac{1 ix}{1 - ix}right)^n frac{1 ia}{1 - ia}) has all real roots. We will break down the proof into several key steps, each focusing on transforming the given equation into a manageable form and analyzing it rigorously. This will involve complex analysis and the consideration of magnitudes and arguments.
Step 1: Analyzing the Left-Hand Side (LHS)
Let's denote the left-hand side (LHS) of the equation as ( z ): z frac{1 ix}{1 - ix}.
First, let us express ( z ) in a more manageable form. We can multiply the numerator and the denominator by ( 1 ix ) to simplify:
z frac{1 ix}{1 - ix} cdot frac{1 ix}{1 ix} frac{1 2ix - x^2}{1 - x^2}
Further simplifying the numerator:
1 2ix - x^2 (1 - x^2) 2ix
We now have:
z frac{1 - x^2 2ix}{1 - x^2} frac{1 - x^2}{1 - x^2} frac{2ix}{1 - x^2} 1 frac{2ix}{1 - x^2}
This can be separated into its real and imaginary parts:
z 1 i cdot frac{2x}{1 - x^2}
Step 2: Analyzing the Right-Hand Side (RHS)
Next, let's analyze the right-hand side (RHS) of the equation: w frac{1 ia}{1 - ia}.
Similarly, we can simplify ( w ) by multiplying the numerator and the denominator by ( 1 ia ):
w frac{1 ia}{1 - ia} cdot frac{1 ia}{1 ia} frac{1 2ia - a^2}{1 - a^2}
Further simplifying the numerator:
1 2ia - a^2 (1 - a^2) 2ia
We now have:
w frac{1 - a^2 2ia}{1 - a^2} frac{1 - a^2}{1 - a^2} frac{2ia}{1 - a^2} 1 i cdot frac{2a}{1 - a^2}
This can also be separated into its real and imaginary parts:
w 1 i cdot frac{2a}{1 - a^2}
Step 3: Setting Up the Equation
Now we set the two sides equal:
left(1 i cdot frac{2x}{1 - x^2}right)^n 1 i cdot frac{2a}{1 - a^2}
Step 4: Analyzing the Magnitudes
For both sides to be equal, their magnitudes must also be equal. The magnitude of ( z ) is:
|z| sqrt{left(1 - frac{2x^2}{1 - x^2}right) left(frac{2x}{1 - x^2}right)^2} sqrt{frac{1 - x^2 4x^2}{(1 - x^2)^2}} sqrt{frac{1 3x^2}{(1 - x^2)^2}} 1
The magnitude of ( w ) is:
|w| sqrt{left(1 - frac{2a^2}{1 - a^2}right) left(frac{2a}{1 - a^2}right)^2} sqrt{frac{1 - a^2 4a^2}{(1 - a^2)^2}} sqrt{frac{1 3a^2}{(1 - a^2)^2}} 1
Step 5: Analyzing the Argument
Next, we consider the arguments of both sides. The argument of ( z ) is given by:
arg(z) arctanleft(frac{2x}{1 - x^2}right)
And for ( w ):
arg(w) arctanleft(frac{2a}{1 - a^2}right)
Step 6: Roots of the Equation
The equation can be rewritten in terms of arguments:
n arctanleft(frac{2x}{1 - x^2}right) arctanleft(frac{2a}{1 - a^2}right) 2kpi
for some integer ( k ). This implies:
arctanleft(frac{2x}{1 - x^2}right) frac{arctanleft(frac{2a}{1 - a^2}right) 2kpi}{n}
The left-hand side ( arctanleft(frac{2x}{1 - x^2}right) ) is a continuous function of ( x ), while the right-hand side is a constant for fixed ( a ) and ( k ). Therefore, the equation will have solutions where the values of ( x ) correspond to real values.
Thus, for each fixed ( a ), the equation (left(frac{1 ix}{1 - ix}right)^n frac{1 ia}{1 - ia}) has all real roots (boxed{x}).
This completes the proof that the equation has all real roots.